sábado, 18 de julio de 2015

¡Habemus ganador!

Me complace comunicar a mis lectores que, tal como anuncia Borja González Seoane en su blog Metros por segundo, ya contamos con nuestra Ardilla de oro. El afortunado es José Luis "Pepeñu" Bueno López. ¡¡Enhorabuena!!
   En lo que respecta a mi cuestión, recordemos que se preguntaba por la propiedad observable directamente relacionada con la temperatura de una estrella o de cualquier objeto, la respuesta "corta", aquella con la que me conformaba para dar por buena la respuesta, es el color. De todos los que la acertaron, la mayoría dio esta respuesta, si bien hubo algunas personas que se extendieron un poco más.
   Efectivamente la experiencia nos dice que cuando un material se calienta, empieza a emitir luz (un metal al rojo vivo, los filamentos de las antiguas bombillas incandescentes, etc.) y que el color de esa luz varía a medida que aumenta la temperatura. Así un metal al rojo blanco está más caliente que uno al rojo vivo, y una llama por combustión de butano es azul porque es mucho más caliente que la llama de una vela. 

Bunsen burner flame types.jpgCasting.jpg


Hierro fundido (izquierda). El hierro funde a 1808 grados Kelvin (1535 °C), de ahí su color anaranjado. En la imagen de la derecha, llamas de diferentes colores en un mechero Bunsen. Dependiendo de la cantidad de oxígeno que interviene en la combustión la llama estará a mayor o menor temperatura. La llama azul es la más caliente (unos 7000 grados), mientras que la anaranjada es "más fría" (unos 2000).

   En realidad la relación de la temperatura de un cuerpo con el "color" de la radiación que emite, no se limita a la región visible del espectro; lo que nuestro cerebro interpreta como "color" es en realidad luz de una determinada longitud de onda (así la luz azul es luz de una longitud de onda en torno a 400 nanómetros, mientras que la luz roja lo es en torno a 750 nanómetros), pero el espectro abarca desde las ondas de radio hasta los rayos gamma, pasando por las microondas, el infrarrojo, el visible, el ultravioleta y los rayos x. Todo cuerpo, por el mero hecho de hallarse a una temperatura determinada (por encima del cero absoluto –273 grados centígrados bajo cero o 0 grados Kelvin–) emite luz o radiación, así nosotros, por hallarnos a una temperatura de 37 grados centígrados, emitimos, pero en el infrarrojo, y por eso no nos vemos en la oscuridad, aunque usando cámaras de infrarrojos sí se puede detectar en la oscuridad la presencia de personas o animales.

Electromagnetic-Spectrum.svg
Espectro electromagnético. Todas las formas de radiación, desde las ondas de radio y más largas, hasta los rayos gamma, pasando por la luz visible, son en realidad lo mismo, "luz". Solo se diferencian en la energía, que se relaciona con la longitud de onda a través de la frecuencia. Las longitudes de onda a las que emite un cuerpo están relacionadas con su temperatura.
   Pero un objeto no emite en una sola longitud de onda, sino en un conjunto de ellas, en cada una con diferente intensidad.
   En Física se maneja la noción de cuerpo negro, un objeto hecho de un material ideal de forma que absorbe toda la radiación que recibe (no refleja). Para un cuerpo negro a una determinada temperatura está perfectamente establecida la intensidad a la que emite en cada longitud de onda+ a través de la llamada Ley de Planck. Para diferentes temperaturas hay siempre una longitud de onda en la que el cuerpo emite con máxima intensidad, y la relación entre esta longitud de onda máxima y la temperatura es una relación sencilla.

Black body.svg
Radiación del cuerpo negro. Para cada temperatura existe una longitud de onda en la que la intensidad de emisión es máxima. Así un cuerpo que esté a 3000 K (grados kelvin) emite el máximo en infrarrojo (que nosotros no vemos) pero aún hay una parte que emite en visible, de la cual la mayoría en el rojo-anaranjado, por eso los metales al rojo los vemos de ese color. Un cuerpo que esté a 5000 K tendrá su máxima intensidad en el verde-amarillo, pero como también emite en las demás longitudes de onda, nosotros lo veríamos prácticamente blanco, aunque recibiríamos de él bastante radiación ultravioleta e infrarroja, además de otras en menor medida (pensemos en el sol).


   Muchos objetos reales, entre ellos las estrellas, los metales al rojo y las llamas, pueden considerarse cuerpos negros en primera aproximación, de forma que aplicando las leyes de Planck y de Wien podemos inferir su temperatura. En este principio se basan los termómetros de infrarrojos. Por supuesto los cuerpos reales no son cuerpos negros. Dependiendo del material de que estén hechos existen longitudes de onda en las cuales los cuerpos no emiten (espectro de absorción) que nos permite conocer de qué material está constituido.

Solar Spectrum by NOAO.jpg EffectiveTemperature 300dpi e.png

En la imagen de la izquierda se muestra el espectro de radiación solar en comparación con el de un cuerpo negro a su misma temperatura. Se ve que no coincide pero se ajusta bastante bien. A la derecha una foto del espectro solar donde las líneas negras se corresponden con las líneas de absorción. Estas líneas representan, literalmente, el "código de barras" que nos permite saber qué materiales están presentes en la fotosfera. El helio se descubrió en el sol antes que en la Tierra, de ahí su nombre.

Así, a través de la aproximación del cuerpo negro y de sus espectros reales, la Fisica nos proporciona una herramienta sencilla y elegante de conocer la temperatura y composición de estrellas lejanas, nebulosas, que se hallan a distancias inimaginables.

No hay comentarios:

Publicar un comentario