jueves, 11 de febrero de 2016

«We have detected gravitational waves»

Quienes hayan visto la rueda de prensa de la Fundación Nacional para la Ciencia de Estados Unidos (en el momento de escribir estas líneas la estoy siguiendo en streaming) habrán escuchado las cinco palabras más mágicas, emocionantes y... (no tengo palabras) que probablemente escuchará en toda su vida: "We have detected gravitational waves". Desde luego a uno se le ponen los pelos como escarpias. Ya desde septiembre corrían rumores acerca de la detección de ondas gravitacionales, ¿pero qué son y por qué son tan importantes? En este artículo, escrito de forma un tanto precipitada, con la emoción a flor de piel y lágrimas en los ojos mientras escucho en directo a los protagonistas del descubrimiento, intentaré explicar su naturaleza, mientras que los detalles del experimento los dejo para una futura entrada.
   En primer lugar tenemos que entender qué es la gravedad. En realidad todos tenemos una idea de lo que es, pues está presente en nuestra vida cotidiana: la experimentamos como una fuerza de atracción que ejerce la Tierra sobre todos los objetos que están sobre ella. Esto es obvio. Nosotros "pesamos", si saltamos, volvemos de nuevo al suelo, no salimos volando; si una cosa no está sujeta, se cae.
    La experimentamos como una fuerza, y es así como la define Newton en sus Principia Mathematica. dos cuerpos con masa se atraen con una fuerza proporcional al producto de sus respectivas masas e inversamente proporcional al cuadrado de la distancia que los separa. A la constante de proporcionalidad la llamó constante de gravitación universal, y su valor es el mismo independientemente de la naturaleza de los cuerpos que estemos tratando. Así, y esto ya no es tan obvio ni evidente, no es solo que la Tierra nos atraiga a nosotros y a todos los demás objetos que están en las proximidades de su superficie, sino que cada uno de estos objetos ejercen a su vez una fuerza de atracción sobre la Tierra –igual y de sentido contrario– y también se atraen entre ellos. Y no es obvio porque la fuerza que ejerzo yo sobre la Tierra, aunque es la misma que la que ésta ejerce sobre mí, no produce el mismo efecto en ambos cuerpos; y por otro lado la fuerza gravitatoria es tan pequeña que entre objetos de masas relativamente pequeñas, como los objetos cotidianos, es inapreciable. Así nunca veremos que una taza y un bolígrafo se atraigan, ni que las cosas y las demás personas se vayan pegando a nosotros cuando vamos por la calle. Pero la Tierra sí ejerce una fuerza sobre la Luna, por eso ésta gira alrededor de aquélla; el Sol sobre la Tierra y los demás planetas, que a su vez giran a su alrededor; y, supuestamente, un agujero negro supermasivo mantiene unida a toda la galaxia, cuyas estrellas, incluido el sol, giran en torno a su centro. La gravedad lunar se deja sentir en la Tierra, pues es la principal responsable de las mareas (en esto la gravedad del Sol también interviene).

Fuerzas gravitatorias entre dos cuerpos(la Tierra y la Luna en este 
caso) según laGravitación Universal de Newton. Ambas fuerzas tienen el 
mismo valor, perono afectan a ambos cuerpos de la mismaforma. El objeto 
menos masivo se mueve másdeprisa que el más masivo, lo que crea 
el efecto de que uno rota en torno al otro. 
En realidad, ambos rotan en torno a unpunto imaginario llamado "centro de 
masas",que en este caso está muy cerca del centro de la Tierra. 

    La ley de Newton  es muy útil, pues no solo nos permite entender la mecánica orbital de planetas y satélites, sino además mantener satélites artificiales en órbita y diseñar rutas para enviar naves a Marte y otros planetas, pero tiene un pero. En realidad tiene más de uno:
    Por un lado está la órbita de Mercurio. La posición de Mercurio calculada a partir de la ley de Newton y su posición real observada difieren. Lo hacen muy poco, es cierto, pero no coinciden del todo. Esto significa que la ley de la gravitación universal es incapaz de predecir correctamente la posición del planeta más cercano al sol. Por otro lado no explica la naturaleza de esta fuerza. ¿Cómo el Sol mantiene a los planetas orbitando en torno suyo?
     En septiembre de 1915 (hace poco más de cien años) Einstein publicó su teoría de la Relatividad General, que explica la gravedad como una perturbación, más concretamente como una curvatura, que los objetos con masa provocan en el tejido del espacio-tiempo. para entenderlo, es como si colocáramos una bola de plomo sobre una cama elástica: la superficie se comba, y si colocamos una bola de madera en sus proximidades, se deslizará por esa curva.

Representación de la curvatura que un objeto con masa como el Sol
provoca en el continuo espacio-tiempo. La Tierra, atrapada en esa
curvatura, "cae" hacia el sol.

    Hay que insistir en que esto es una mera representación. el espacio es una cama elástica de tres dimensiones (cuatro contando con el tiempo).
    Esto es lo que dice la teoría, ¿cómo se puede comprobar que funciona? En primer lugar la Relatividad General predice correctamente la posición de Mercurio. Por otra parte, predice la curvatura de los rayos de luz al pasar cerca de un objeto con masa, y eso se pudo comprobar durante el eclipse total de sol de 1919.
    ¿Qué quiere decir esto? Un rayo de luz que se mueva en línea recta por un espacio curvado, lo veríamos como un ravo curvado. el haz de luz de una estrella pasa muy cerca del sol, se desviará ligeramente, de forma que si la estrella queda oculta por el sol, el rayo lo rodearía y podríamos verla. Este efecto no se puede observar de ordinario porque la luz del sol nos cegaría, por lo que habría que "tapar" el sol. El 29 de mayo de 1919, menos de cuatro años después de la publicación del trabajo de Einstein, tuvo lugar un eclipse total de sol que permitió comprobar que efectivamente, estrellas que quedaban ocultas por el sol, pero muy cerca de su borde, podían verse al ser su luz desviada por la gravedad de este.


Un objeto como el sol curva el espacio de forma que otro objeto,
como la Tierra, se ve "atrapado" en esa curvatura, al mismo tiempo
que un rayo de luz que pasa cerca también sufre una desviación en
su trayectoria. En realidad no es que el rayo se curve, lo que se
curva es el espacio. Es como si en nuestra cama elástica, antes de
colocar la bola de plomo dibujamos una línea recta. Al curvarse
la superficie, la línea parece como si se curvara.



Efecto de la curvatura de la luz en el espacio tridimensional. La estrella lejana está
oculta por el sol, pero al ser desviada su luz hacia la Tierra al pasar cerca del borde, 
podemos verla además multiplicada a lo largo de dicho borde.



    Este efecto no solo se ha observado con el sol. La luz de un quásar, un objeto extremadamente lejano pero a la vez muy energético, puede ser desviada por una galaxia de manera que veamos su imagen duplicada o multiplicada alrededor del punto donde se encuentra dicha galaxia.
    Hay que recalcar que la confirmación vino en 1919, pero después de eso se han llevado a cabo muchísimas observaciones que lo corroboran, de forma que hoy es un hecho bien establecido.
    Pero la presencia de una masa no solo afecta al espacio, sino también al tiempo. En las proximidades de un objeto masivo el tiempo transcurre más lentamente, y este efecto también se ha medido en la Tierra con relojes atómicos situados a diferentes alturas. De hecho el GPS tiene que tener en cuenta este efecto, de lo contrario es impreciso.
    ¿Y qué tiene todo esto que ver con las ondas gravitacionales? Se trata de otra predicción de la relatividad general, y consiste en que esta perturbación, esta curvatura producida en el espacio-tiempo, se propaga en forma de ondas al moverse el objeto que la produce.
    En el universo los objetos no están quietos (la luna gira alrededor de la Tierra, esta alrededor del sol, el sol alrededor del centro de la galaxia, donde supuestamente hay un agujero negro súper masivo...), y al hacerlo van curvando el espacio a su paso. Es como las olitas que produce un barco a medida que avanza sobre la superficie de un lago tranquilo, co las ondas que se producen cuando tiramos una piedrecita a un charco.
    Estas ondas son muy tenues y por tanto extremadamente difíciles de detectar, por eso no podemos, por ejemplo, medir las que provoca la luna o el sol, al menos con los instrumentos actuales. Necesitamos agujeros negros muy masivos, aunque tienen la desventaja de que están muy lejos. Si dos agujeros negros súper masivos rotan uno en torno al otro, producirían ondas gravitatorias que podríamos detectar en la Tierra, que es lo que ha ocurrido. Las ondas que presuntamente se han detectado (y lo de «presuntamente» lo explico más adelante) corresponderían a dos agujeros negros situados a unos 1300 millones de años luz. Pensémoslo un momento: cuando esas ondas partieron de allí ya había vida en la Tierra, pero aún era vida unicelular; faltaban todavía mil millones de años para que aparecieran los dinosaurios. 1300 millones de años después de ser emitida, un detector creado por la misma especie inteligente que fue capaz de predecirlas, las capta. 
    Vuelvan a leer la última frase y díganme mirándome a los ojos que no se les pone carne de gallina.


Modelo de dos agujeros negros súper masivos rotando uno en torno al otro.
su movimiento produce ondas gravitacionales, que no son otra cosa que
la propagación de la curvatura que producen en el tejido del espacio-tiempo.

    ¿Por qué es importante, y hasta revolucionario el hallazgo de estas ondas? En primer lugar es importante porque se trata de la última predicción de la relatividad general que todavía no se había verificado. Durante un siglo tras su predicción no se había tenido constancia de ellas. Y es revolucionario porque hasta ahora toda la información que tenemos del universo nos llega únicamente a través de la luz, ya sea ondas de radio, microondas, luz visible, ultravioleta o rayos gamma. A partir de ahora podríamos contar con un medio diferente para observar el universo, y quién sabe qué nuevos descubrimientos nos traerá esto.
    Pero hay que tener cuidado. Antes he usado el término "presunto descubrimiento" con toda la intención. Lo que ha ocurrido hoy es que un grupo de investigación ha dado una rueda de prensa para anunciar que ha hecho un descubrimiento. Si la Ciencia fuera una religión o una ideología política la cosa se quedaría aquí. Un grupo de sabios afirma que... Pero la ciencia no funciona así. Ahora tiene que ver la luz el artículo en el que expliquen cómo han llevado a cabo las observaciones, de forma que otros científicos de otros grupos de investigación, de otros proyectos, puedan revisar ese trabajo y hasta reproducirlo, y verificar que no se ha cometido ningún error, ni fraude, ni nada por el estilo. Ya ven, la ciencia es transparente por definición, ojalá funcionara así la política. Por tanto, lágrimas y escarpias aparte, todavía es pronto para echar las campanas al vuelo. Cabe emocionarse, por supuesto, pero, aunque a esta gente (un proyecto formado por más de mil investigadores en todo el mundo) se le supone una profesionalidad fuera de toda duda, no deja de haber margen para el error. Una sola observación no confirma una teoría ni establece un principio. Por eso, al igual que al eclipse de 1919 le sucedieron miles de confirmaciones, aquí tiene que ocurrir lo mismo.
    Por tanto alegrémonos, sí; celebrémoslo, por qué no; emocionémonos, por supuesto... Pero seamos cautos.

    Larga vida y prosperidad. 









No hay comentarios:

Publicar un comentario